
September 2008 FoxRockX Page 23

VFP’s tools for working with text have improved as
the	importance	of	text	files	has	grown.	In	a	world	
where we need to parse and create HTML, XML,
and other text formats, using the best VFP has to
offer makes the job a lot easier.
When	I	started	working	with	FoxBase+	in	the	last	
1980’s,	 I	 rarely	had	to	do	anything	with	 text	files.	
But	 as	 FoxPro	 entered	 the	Windows	 world,	 text,	
such	as	.INI	files,	assumed	increasing	importance.	
By	the	mid-90’s,	with	the	explosion	of	the	Internet,	
the	ability	to	handle	text	files	became	an	important	
part of application development.

Mirroring those changes, FoxPro’s tools for
working	with	text	files	and	the	text	within	have	im-
proved	over	time.	Even	early	versions	of	Fox	prod-
ucts had the ability to parse and format text strings,
and we’ve had a fairly straightforward way to read
and	write	text	files	since	FoxPro	1.0.	

As with other areas, it’s easy to keep using the
techniques you learned long ago. Since VFP 6, how-
ever, there’s been a veritable explosion of text han-
dling	techniques.	This	article	looks	at	the	first	step	
in working with text, reading and writing it.

Reading and writing text files
When	the	low-level	file	functions	(LLFFs)	were	in-
troduced	in	FoxPro	1.0,	I	was	intimidated	by	their	
name. “Low-level” sounded like something for the
same	people	who	used	the	LCK	(Library	Construc-
tion	Kit)	 to	 build	FLLs,	 not	 for	mere	mortals	 like	
me.	Eventually,	I	needed	to	work	with	some	exter-
nal	files	and	I	learned	that,	in	fact,	the	LLFFs	were	
pretty much the same kind of mechanism I’d used
to read and write data in other languages.

Even	 so,	 working	 with	 the	 LLFFs	 is	 tedious.	
You	have	 to	open	the	file	with	 the	right	 function,	
hang onto the handle that function returns, and
make a series of function calls to actually read the
data. Listing 1 shows code that reads the contents
of	a	text	file	into	a	variable:

Listing 1. To read a text file with the low-level file functions, you
open it and get a handle, then loop through until you run out of
file.
* This code reads the file in blocks of
* 254 characters
nHandle = FOPEN(m.cFileName)
IF m.nHandle <> -1
 cContents = ""
 DO WHILE NOT FEOF(m.nHandle)
 cContents = m.cContents + ;
 FREAD(m.nHandle, 254)

Working with text
Tamar E. Granor, Ph.D.

 ENDDO
 FCLOSE(m.nHandle)
ENDIF

Writing	a	text	file	is	a	little	simpler	because	the	
FWRITE()	function	accepts	the	length	of	the	string	
as a parameter, and can handle arbitrarily large
strings. Listing	2	shows	one	way	to	write	a	text	file	
with the LLFFs.

Listing 2. Writing a text file with the low-level file functions is
simpler than reading one.
nHandle = FCREATE(m.cFileName)
IF m.nHandle <> -1
 nResult = FWRITE(m.nHandle, ;
 m.cContents, LEN(m.cContents))
ENDIF
FCLOSE(m.nHandle)

While these approaches work, VFP 6 intro-
duced a pair of functions that virtually eliminate
the need to use the LLFFs: FileToString() and
StrToFile().	As	their	names	suggest,	they	read	a	file	
into	a	string	and	write	a	string	to	a	file,	respectively.	
They also convert the code blocks above into single
lines of code. Listing	3 shows how to use FileTo-
String(), while Listing	4 demonstrates StrToFile().

Listing 3. With FileToString(), reading in a text file takes just
one line.
cContents = FILETOSTR(m.cFileName)

Listing 4. StrToFile() turns writing a text file into a one-liner.
nResult = STRTOFILE(m.cContents, ;
 m.cFileName, .F.)

Why switch?
If	 you	 need	 to	 read	 text	 files	 regularly,	 by	 now,	
you’ve probably created your own wrappers for
the	LLFFs,	so	that	you	can	read	and	write	text	files	
with a single call, so why would you switch to the
newer functions?

For	reading	files,	 the	answer	is	simple:	speed.	
I tested the loop in Listing 1 against the single line
in	 Listing	 3	 on	 a	 file	with	 710,000	 characters.	My	
test	read	the	file	in	1000	times.	For	the	LLFFs,	I	also	
tested with a variety of block sizes (the second pa-
rameter	to	FREAD())	from	254	bytes	to	2540.	While	
a larger block size made a difference (with the larg-
est	 block	 size,	 1000	passes	 took	 about	 80%	of	 the	
time as with the smallest block size), FileToStr()
was	more	than	30	times	faster	than	the	fastest	LLFF	
attempt.

Page 24 FoxRockX September 2008

The speed advantage of FileToStr() also var-
ies	 with	 the	 size	 of	 the	 target	 file.	 For	 tiny	 files,	
FileToStr() has almost no advantage, but even in
the	vicinity	of	40KB	files,	FileToStr()	 is	about	30%	
faster than the LLFFs.

Listing 5 shows my code for testing read
speed.

Listing 5. FileToStr() is just about always faster than reading
with the LLFFs. For large files, it’s an order of magnitude or
more faster.
* Compare LLFF with FileToStr()
#DEFINE PASSES 1000

* For LLFF, open file and read one
* line at a time.

LOCAL cFileName, nHandle, cContents
LOCAL nStart, nEnd, nPass
LOCAL nBlockPass, nBlockSize

cFileName = GETFILE(“TXT;LOG”)

* Try different block lengths
FOR nBlockPass = 1 TO 10
 nBlockSize = m.nBlockPass * 254
 nStart = SECONDS()

 FOR nPass = 1 TO PASSES
 nHandle = FOPEN(m.cFileName)
 IF m.nHandle <> -1
 cContents = ""
 DO WHILE NOT ;
 FEOF(m.nHandle)
 cContents = ;
 m.cContents + ;
 FREAD(m.nHandle,;
 m.nBlockSize)
 ENDDO
 FCLOSE(m.nHandle)
 ENDIF
 ENDFOR
 nEnd = SECONDS()

 ? " Using LLFF, result has ", ;
 LEN(m.cContents), “ characters”
 ? " With block size = ", ;
 m.nBlockSize, “, total time = ",;
nEnd - nStart
ENDFOR
* For FileToStr(), one-liner
nStart = SECONDS()

FOR nPass = 1 TO PASSES
 cContents = FILETOSTR(m.cFileName)
ENDFOR
nEnd = SECONDS()

? " Using FILETOSTR(), result has ",;
 LEN(m.cContents), " characters"
? " Total time = ", nEnd – nStart

When	writing	text	files,	the	case	is	murkier.	For	
small	files,	 StrToFile()	 is	 about	 a	 third	 faster	 than	
the LLFFs. However, when the string to write is
more	than	327,680	(which	is	320	*	1024)	characters,	
StrToFile()	 has	 a	 significant	 slowdown,	 and	 the	
LLFFs are faster. According to VFP MVP Christof
Wollenhaupt, the difference is in the way VFP
translates the calls to API calls. He says that
StrToFile uses:

“a single call to the WriteFile() API function
passing the string as a parameter.

“Hence, I assume that this is an issue with
the API or a driver. VFP makes synchronous
API calls. What I guess is happening behind the
scenes is that the driver stores data in a buffer
and	then	performs	an	asynchronous	file	opera-
tion. When the content exceeds the size of the
buffer, the driver would have to complete the
first	 operation,	 before	 adding	 the	 second	 part	
to the async buffer. Alternatively, large blocks
might be written with a lower priority as to not
to slow down the system too much.

“You don’t see the same issue with
FWRITE(),	 because	 FWRITE()	 splits	 the	 string	
into	blocks	of	0x20000	bytes	and	is	therefore	al-
ways	below	the	limit.	The	single	FWRITE()	call	
results in three calls to the WriteFile API func-
tion.”
Breaking	the	string	up	into	pieces	no	more	than	

327,680	characters	and	issuing	multiple	calls	to	Str-
ToFile() doesn’t improve matters (given Christof’s
explanation, this makes sense). In fact, in my tests,
that approach was slower than the single call. The
bottom line, therefore, is that if you might be writ-
ing	large	text	files,	you	may	want	to	stick	with	the	
LLFFs. If that’s your choice, wrapping the write
process up into a single function method is a good
idea. Listing 6 shows my code for testing write
speed.

Listing 6. StrToFile() has only a small advantage over LLFFs
for small to medium files. For large files, FWRITE() is a better
choice.
* Compare LLFF with StrToFile()
#DEFINE PASSES 100

LOCAL cFileName, cContents, nHandle
LOCAL nPass, nSTart, nEnd

cFileName = FORCEPATH(“TestOutput.TXT",;
 SYS(2023))
SET SAFETY OFF

SET ALTERNATE TO StrToFileTiming.TXT
SET ALTERNATE ON

FOR nLength = 1 TO 10
 cContents = REPLICATE(“Now is "+;
 "the time for all good men to "+;
 "come to the aid of their country." ;
 + CHR(13) + CHR(10), 1000 * m.nLength)

 ? * For LLFF, have to create file
 * and then send a bit at a time
 nStart = SECONDS()
 FOR nPass = 1 TO PASSES
 nHandle = FCREATE(;
 m.cFileName)
 IF m.nHandle <> -1
 nResult = FWRITE(;
 m.nHandle, ;
 m.cContents, ;
 LEN(m.cContents))
 ENDIF
 FCLOSE(m.nHandle)
 ENDFOR

September 2008 FoxRockX Page 25

 nEnd = SECONDS()

 ? " With LLFF, characters " + ;
 "written: ", m.nResult
 ? " Total time: ", ;
 m.nEnd - m.nStart

 * For StrToFile(), one line
 nStart = SECONDS()

 FOR nPass = 1 TO PASSES
 nResult = STRTOFILE(;
 m.cContents, ;
 m.cFileName, .F.)
 ENDFOR
 nEnd = SECONDS()

 ? " With STRTOFILE(), "+ ;
 "characters written: ", m.nResult
 ? " Total time: ";
 m.nEnd - m.nStart

 * Try StrToFile() in loop,
 * if past the magic number
 IF LEN(m.cContents) > 327680
 LOCAL nPart, cPart
 nStart = SECONDS()

 FOR nPass = 1 TO PASSES
 DELETE FILE ;
 (m.cFileName)
 FOR nPart = 1 TO ;
 CEILING(;
 LEN(m.cContents);
 /327680)
 cPart = SUBSTR(;
 m.cContents, ;
 (nPart-1) * ;
 327680 + 1, 327680)
 nResult = ;
 STRTOFILE(;
 m.cPart, ;
 m.cFileName, .T.)
 ENDFOR
 ENDFOR
 nEnd = SECONDS()

 ? " With STRTOFILE() in "+;
 "a loop, characters " + ;
 written: ", m.nResult
 ? " Total time: ", m.nEnd -
m.nStart
 ENDIF
ENDFOR

SET ALTERNATE off
SET ALTERNATE TO
SET SAFETY ON

My test programs are included in this month’s
downloads as LLFFvsFileToStr.PRG and LLFFvsStr-
ToFile.PRG.

What next?
Getting	text	data	in	and	out	of	files	is	only	the	first	
step, of course. Once we have the data, we need to
manipulate it in various ways. I’ll look at old and
new approaches for doing so over the next few is-
sues.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s Solutions,
LLC. She has developed and enhanced numerous Visual Fox-
Pro applications for businesses and other organizations. She
currently focuses on working with other developers through
consulting and subcontracting. Tamar is author or co-author
of nine books including the award winning Hacker’s Guide to
Visual FoxPro and Microsoft Office Automation with Visual
FoxPro. Her most recent books are Taming Visual FoxPro’s
SQL and What’s New in Nine: Visual FoxPro’s Latest Hits.
Her books are available from Hentzenwerke Publishing (www.
hentzenwerke.com). Tamar is a Microsoft Certified Profes-
sional and a Microsoft Support Most Valuable Professional. In
2007, Tamar received the Visual FoxPro Community Lifetime
Achievement Award. Tamar speaks frequently about Visual
FoxPro at conferences and user groups in North America and
Europe, including every FoxPro DevCon since 1993. You can
reach her at tamar@thegranors.com or through www.tomor-
rowssolutionsllc.com

FoxRockX™
(ISSN-1866-4563) FoxRockX is published bimonthly by ISYS GmbH

dFPUG c/o ISYS GmbH
Frankfurter Strasse 21 B
61476 Kronberg, Germany
Phone +49-6173-950903
Fax +49-6173-950904
Email: foxrockx@dfpug.de
Editor: Rainer Becker

Copyright © 2008 ISYS GmbH. This work is an independently produ-
ced publication of ISYS GmbH, Kronberg, the content of which is the
property of ISYS GmbH or its affili-ates or third-party licensors and
which is protected by copyright law in the U.S. and elsewhere. The
right to copy and publish the content is reserved, even for content
made available for free such as sample articles, tips, and graphics,
none of which may be copied in whole or in part or further distribu-
ted in any form or medium without the express written permission
of ISYS GmbH. Requests for permission to copy or repub-lish any
content may be directed to Rainer Becker.

FoxRockX, FoxTalk 2.0 and Visual Extend are trademarks of ISYS GmbH. All product names or
services identified throughout this journal are trademarks or registered trademarks of their respec-
tive companies.

