
September 2008	 FoxRockX� Page 23

VFP’s tools for working with text have improved as
the importance of text files has grown. In a world
where we need to parse and create HTML, XML,
and other text formats, using the best VFP has to
offer makes the job a lot easier.
When I started working with FoxBase+ in the last
1980’s, I rarely had to do anything with text files.
But as FoxPro entered the Windows world, text,
such as .INI files, assumed increasing importance.
By the mid-90’s, with the explosion of the Internet,
the ability to handle text files became an important
part of application development.

Mirroring those changes, FoxPro’s tools for
working with text files and the text within have im-
proved over time. Even early versions of Fox prod-
ucts had the ability to parse and format text strings,
and we’ve had a fairly straightforward way to read
and write text files since FoxPro 1.0.

As with other areas, it’s easy to keep using the
techniques you learned long ago. Since VFP 6, how-
ever, there’s been a veritable explosion of text han-
dling techniques. This article looks at the first step
in working with text, reading and writing it.

Reading and writing text files
When the low-level file functions (LLFFs) were in-
troduced in FoxPro 1.0, I was intimidated by their
name. “Low-level” sounded like something for the
same people who used the LCK (Library Construc-
tion Kit) to build FLLs, not for mere mortals like
me. Eventually, I needed to work with some exter-
nal files and I learned that, in fact, the LLFFs were
pretty much the same kind of mechanism I’d used
to read and write data in other languages.

Even so, working with the LLFFs is tedious.
You have to open the file with the right function,
hang onto the handle that function returns, and
make a series of function calls to actually read the
data. Listing 1 shows code that reads the contents
of a text file into a variable:

Listing 1. To read a text file with the low-level file functions, you
open it and get a handle, then loop through until you run out of
file.
* This code reads the file in blocks of
* 254 characters
nHandle = FOPEN(m.cFileName)
IF m.nHandle <> -1
 cContents = ""
 DO WHILE NOT FEOF(m.nHandle)
 cContents = m.cContents + ;
		 FREAD(m.nHandle, 254)

Working with text
Tamar E. Granor, Ph.D.

 ENDDO
 FCLOSE(m.nHandle)
ENDIF

Writing a text file is a little simpler because the
FWRITE() function accepts the length of the string
as a parameter, and can handle arbitrarily large
strings. Listing 2 shows one way to write a text file
with the LLFFs.

Listing 2. Writing a text file with the low-level file functions is
simpler than reading one.
nHandle = FCREATE(m.cFileName)
IF m.nHandle <> -1
 nResult = FWRITE(m.nHandle, ;
	 m.cContents, LEN(m.cContents))
ENDIF
FCLOSE(m.nHandle)

While these approaches work, VFP 6 intro-
duced a pair of functions that virtually eliminate
the need to use the LLFFs: FileToString() and
StrToFile(). As their names suggest, they read a file
into a string and write a string to a file, respectively.
They also convert the code blocks above into single
lines of code. Listing 3 shows how to use FileTo-
String(), while Listing 4 demonstrates StrToFile().

Listing 3. With FileToString(), reading in a text file takes just
one line.
cContents = FILETOSTR(m.cFileName)

Listing 4. StrToFile() turns writing a text file into a one-liner.
nResult = STRTOFILE(m.cContents, ;
	 m.cFileName, .F.)

Why switch?
If you need to read text files regularly, by now,
you’ve probably created your own wrappers for
the LLFFs, so that you can read and write text files
with a single call, so why would you switch to the
newer functions?

For reading files, the answer is simple: speed.
I tested the loop in Listing 1 against the single line
in Listing 3 on a file with 710,000 characters. My
test read the file in 1000 times. For the LLFFs, I also
tested with a variety of block sizes (the second pa-
rameter to FREAD()) from 254 bytes to 2540. While
a larger block size made a difference (with the larg-
est block size, 1000 passes took about 80% of the
time as with the smallest block size), FileToStr()
was more than 30 times faster than the fastest LLFF
attempt.

Page 24	 FoxRockX� September 2008

The speed advantage of FileToStr() also var-
ies with the size of the target file. For tiny files,
FileToStr() has almost no advantage, but even in
the vicinity of 40KB files, FileToStr() is about 30%
faster than the LLFFs.

Listing 5 shows my code for testing read
speed.

Listing 5. FileToStr() is just about always faster than reading
with the LLFFs. For large files, it’s an order of magnitude or
more faster.
* Compare LLFF with FileToStr()
#DEFINE PASSES 1000

* For LLFF, open file and read one
* line at a time.

LOCAL cFileName, nHandle, cContents
LOCAL nStart, nEnd, nPass
LOCAL nBlockPass, nBlockSize

cFileName = GETFILE(“TXT;LOG”)

* Try different block lengths
FOR nBlockPass = 1 TO 10
 nBlockSize = m.nBlockPass * 254
 nStart = SECONDS()

 FOR nPass = 1 TO PASSES
 nHandle = FOPEN(m.cFileName)
 IF m.nHandle <> -1
 cContents = ""
 DO WHILE NOT ;
 FEOF(m.nHandle)
 cContents = ;
 m.cContents + ;
 FREAD(m.nHandle,;
 m.nBlockSize)
 ENDDO
 FCLOSE(m.nHandle)
 ENDIF
 ENDFOR
 nEnd = SECONDS()

 ? " Using LLFF, result has ", ;
 LEN(m.cContents), “ characters”
 ? " With block size = ", ;
 m.nBlockSize, “, total time = ",;
nEnd - nStart
ENDFOR
* For FileToStr(), one-liner
nStart = SECONDS()

FOR nPass = 1 TO PASSES
	 cContents = FILETOSTR(m.cFileName)
ENDFOR
nEnd = SECONDS()

? " Using FILETOSTR(), result has ",;
 LEN(m.cContents), " characters"
? " Total time = ", nEnd – nStart

When writing text files, the case is murkier. For
small files, StrToFile() is about a third faster than
the LLFFs. However, when the string to write is
more than 327,680 (which is 320 * 1024) characters,
StrToFile() has a significant slowdown, and the
LLFFs are faster. According to VFP MVP Christof
Wollenhaupt, the difference is in the way VFP
translates the calls to API calls. He says that
StrToFile uses:

“a single call to the WriteFile() API function
passing the string as a parameter.

“Hence, I assume that this is an issue with
the API or a driver. VFP makes synchronous
API calls. What I guess is happening behind the
scenes is that the driver stores data in a buffer
and then performs an asynchronous file opera-
tion. When the content exceeds the size of the
buffer, the driver would have to complete the
first operation, before adding the second part
to the async buffer. Alternatively, large blocks
might be written with a lower priority as to not
to slow down the system too much.

“You don’t see the same issue with
FWRITE(), because FWRITE() splits the string
into blocks of 0x20000 bytes and is therefore al-
ways below the limit. The single FWRITE() call
results in three calls to the WriteFile API func-
tion.”
Breaking the string up into pieces no more than

327,680 characters and issuing multiple calls to Str-
ToFile() doesn’t improve matters (given Christof’s
explanation, this makes sense). In fact, in my tests,
that approach was slower than the single call. The
bottom line, therefore, is that if you might be writ-
ing large text files, you may want to stick with the
LLFFs. If that’s your choice, wrapping the write
process up into a single function method is a good
idea. Listing 6 shows my code for testing write
speed.

Listing 6. StrToFile() has only a small advantage over LLFFs
for small to medium files. For large files, FWRITE() is a better
choice.
* Compare LLFF with StrToFile()
#DEFINE PASSES 100

LOCAL cFileName, cContents, nHandle
LOCAL nPass, nSTart, nEnd

cFileName = FORCEPATH(“TestOutput.TXT",;
	 SYS(2023))
SET SAFETY OFF

SET ALTERNATE TO StrToFileTiming.TXT
SET ALTERNATE ON

FOR nLength = 1 TO 10
 cContents = REPLICATE(“Now is "+;
 "the time for all good men to "+;
 "come to the aid of their country." ;
 + CHR(13) + CHR(10), 1000 * m.nLength)
	
 ? * For LLFF, have to create file
 * and then send a bit at a time
 nStart = SECONDS()
 FOR nPass = 1 TO PASSES
 nHandle = FCREATE(;
 m.cFileName)
 IF m.nHandle <> -1
 nResult = FWRITE(;
 m.nHandle, ;
 m.cContents, ;
 LEN(m.cContents))
 ENDIF
 FCLOSE(m.nHandle)
 ENDFOR

September 2008	 FoxRockX� Page 25

 nEnd = SECONDS()

 ? " With LLFF, characters " + ;
 "written: ", m.nResult
 ? " Total time: ", ;
 m.nEnd - m.nStart

 * For StrToFile(), one line
 nStart = SECONDS()

 FOR nPass = 1 TO PASSES
 nResult = STRTOFILE(;
 m.cContents, ;
 m.cFileName, .F.)
 ENDFOR
 nEnd = SECONDS()

 ? " With STRTOFILE(), "+ ;
 "characters written: ", m.nResult
 ? " Total time: ";
 m.nEnd - m.nStart
	
 * Try StrToFile() in loop,
 * if past the magic number
 IF LEN(m.cContents) > 327680
 LOCAL nPart, cPart
 nStart = SECONDS()

 FOR nPass = 1 TO PASSES
 DELETE FILE ;
 (m.cFileName)
 FOR nPart = 1 TO ;
 CEILING(;
 LEN(m.cContents);
 /327680)
 cPart = SUBSTR(;
 m.cContents, ;
 (nPart-1) * ;
 327680 + 1, 327680)
 nResult = ;
 STRTOFILE(;
 m.cPart, ;
 m.cFileName, .T.)
 ENDFOR
 ENDFOR
 nEnd = SECONDS()

 ? " With STRTOFILE() in "+;
 "a loop, characters " + ;
 written: ", m.nResult
 ? " Total time: ", m.nEnd - 			
m.nStart
 ENDIF
ENDFOR

SET ALTERNATE off
SET ALTERNATE TO
SET SAFETY ON

My test programs are included in this month’s
downloads as LLFFvsFileToStr.PRG and LLFFvsStr-
ToFile.PRG.

What next?
Getting text data in and out of files is only the first
step, of course. Once we have the data, we need to
manipulate it in various ways. I’ll look at old and
new approaches for doing so over the next few is-
sues.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s Solutions,
LLC. She has developed and enhanced numerous Visual Fox-
Pro applications for businesses and other organizations. She
currently focuses on working with other developers through
consulting and subcontracting. Tamar is author or co-author
of nine books including the award winning Hacker’s Guide to
Visual FoxPro and Microsoft Office Automation with Visual
FoxPro. Her most recent books are Taming Visual FoxPro’s
SQL and What’s New in Nine: Visual FoxPro’s Latest Hits.
Her books are available from Hentzenwerke Publishing (www.
hentzenwerke.com). Tamar is a Microsoft Certified Profes-
sional and a Microsoft Support Most Valuable Professional. In
2007, Tamar received the Visual FoxPro Community Lifetime
Achievement Award. Tamar speaks frequently about Visual
FoxPro at conferences and user groups in North America and
Europe, including every FoxPro DevCon since 1993. You can
reach her at tamar@thegranors.com or through www.tomor-
rowssolutionsllc.com

FoxRockX™
(ISSN-1866-4563) FoxRockX is published bimonthly by ISYS GmbH

dFPUG c/o ISYS GmbH
Frankfurter Strasse 21 B
61476 Kronberg, Germany
Phone +49-6173-950903
Fax +49-6173-950904
Email: foxrockx@dfpug.de
Editor: Rainer Becker

Copyright © 2008 ISYS GmbH. This work is an independently produ-
ced publication of ISYS GmbH, Kronberg, the content of which is the
property of ISYS GmbH or its affili-ates or third-party licensors and
which is protected by copyright law in the U.S. and elsewhere. The
right to copy and publish the content is reserved, even for content
made available for free such as sample articles, tips, and graphics,
none of which may be copied in whole or in part or further distribu-
ted in any form or medium without the express written permission
of ISYS GmbH. Requests for permission to copy or repub-lish any
content may be directed to Rainer Becker.

FoxRockX, FoxTalk 2.0 and Visual Extend are trademarks of ISYS GmbH. All product names or
services identified throughout this journal are trademarks or registered trademarks of their respec-
tive companies.

